LLM Integration¶
codebrief is specifically designed to generate high-quality context for Large Language Models (LLMs). This guide shows you how to effectively use codebrief with popular AI tools and services.
Overview¶
LLMs work best with well-structured, comprehensive context. codebrief transforms your codebase into the perfect format for AI assistance by providing:
- Structured Information: Clear hierarchy and organization
- Comprehensive Context: Complete project understanding
- Focused Content: Only relevant information without noise
- Standard Formats: Markdown output that LLMs process well
Supported LLM Platforms¶
codebrief works excellently with:
- ChatGPT (OpenAI GPT-3.5, GPT-4, GPT-4o)
- Claude (Anthropic Claude 3, Claude 3.5 Sonnet)
- GitHub Copilot Chat
- Codeium
- Cursor
- Local Models (Ollama, LM Studio, etc.)
Quick Start for LLMs¶
Generate Complete Project Context¶
# Create comprehensive project bundle
codebrief bundle --output project-context.md
# Copy to clipboard (if you have xclip/pbcopy)
cat project-context.md | pbcopy # macOS
cat project-context.md | xclip -selection clipboard # Linux
Focused Context for Specific Questions¶
# Code-focused context
codebrief flatten src/ --include "*.py" --output code-context.md
# Git-focused context for debugging
codebrief git-info --full-diff --output git-context.md
# Dependencies for architecture questions
codebrief deps --output deps-context.md
Platform-Specific Integration¶
ChatGPT Integration¶
Best Practices:
- Use Bundle Command for comprehensive analysis
- Include Git Context for debugging scenarios
- Limit Scope for focused questions
# For general code review/analysis
codebrief bundle \
--output chatgpt-context.md \
--git-log-count 10
# For specific debugging
codebrief bundle \
--exclude-deps \
--git-full-diff \
--flatten src/specific_module/ \
--output debug-context.md
Prompting Tips:
I'm working on a Python project. Here's the complete context:
[Paste codebrief output]
Please analyze the code structure and suggest improvements for:
1. Code organization
2. Error handling
3. Testing coverage
Claude Integration¶
Best Practices:
- Use Structured Output - Claude excels with well-organized information
- Include Documentation - Claude benefits from README and docs context
- Git History for understanding evolution
# Comprehensive analysis for Claude
codebrief bundle \
--output claude-context.md \
--git-log-count 15 \
--flatten docs/ src/ tests/
# Include project documentation
codebrief flatten . \
--include "*.md" "*.rst" "*.txt" \
--exclude "**/node_modules/**" \
--output docs-context.md
Prompting Strategy:
Here's my project context generated by codebrief:
[Paste output]
I need help with [specific task]. Please consider:
- The current project structure
- Recent Git changes
- Existing dependencies
- Code patterns already in use
GitHub Copilot Chat¶
Best Practices:
- Focused Context - Use specific tool outputs
- Current Branch Info - Include Git status
- Recent Changes - Show recent commits
# Context for Copilot Chat
codebrief git-info \
--log-count 5 \
--full-diff \
--output copilot-context.md
# Code structure for current work
codebrief tree --output structure.txt
codebrief flatten src/ --include "*.py" --output current-code.md
Cursor Integration¶
Integration Steps:
- Generate Context Files
- Include in Cursor Project
- Reference in Chat
# Create Cursor-friendly context
mkdir .cursor-context
codebrief bundle --output .cursor-context/project-context.md
codebrief tree --output .cursor-context/structure.txt
# Add to .gitignore if needed
echo ".cursor-context/" >> .gitignore
Use Case Patterns¶
Code Review Assistance¶
# Complete review context
codebrief bundle \
--output review-context.md \
--git-log-count 5 \
--git-full-diff \
--flatten src/ tests/
# Prompt for LLM:
# "Please review this code for: security, performance, maintainability"
Debugging Assistance¶
# Debug-focused context
codebrief git-info \
--full-diff \
--diff-options "--stat" \
--output debug-git.md
codebrief flatten src/ \
--include "*.py" \
--output debug-code.md
# Prompt: "I have a bug in [specific area]. Here's my current code and recent changes."
Architecture Planning¶
# Architecture context
codebrief bundle \
--exclude-git \
--output architecture-context.md
# Prompt: "Help me refactor this codebase to improve [specific aspect]"
Documentation Generation¶
# Documentation context
codebrief bundle \
--exclude-deps \
--git-log-count 1 \
--output docs-context.md
# Prompt: "Generate comprehensive documentation for this project"
Advanced LLM Workflows¶
Automated Context Generation¶
#!/bin/bash
# llm-context.sh - Automated context generation
# Generate different context types
codebrief bundle --output full-context.md
codebrief tree --output structure.md
codebrief deps --output dependencies.md
codebrief git-info --output git-context.md
echo "Context files generated:"
echo "- full-context.md (complete project)"
echo "- structure.md (file tree)"
echo "- dependencies.md (dependencies only)"
echo "- git-context.md (git info only)"
CI/CD Integration for Context¶
# .github/workflows/context-generation.yml
name: Generate LLM Context
on:
pull_request:
branches: [main]
jobs:
generate-context:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Install codebrief
run: |
pip install poetry
poetry install
- name: Generate PR Context
run: |
poetry run codebrief bundle \
--output pr-context.md \
--git-log-count 10 \
--git-full-diff
- name: Add to PR Comment
run: |
echo "## 🤖 LLM Context Generated" >> comment.md
echo "Use this context for AI-assisted code review:" >> comment.md
echo "\`\`\`" >> comment.md
cat pr-context.md >> comment.md
echo "\`\`\`" >> comment.md
Context Templates¶
Create reusable context templates:
# templates/code-review.sh
codebrief bundle \
--output contexts/code-review-context.md \
--git-log-count 5 \
--git-full-diff \
--flatten src/ tests/
# templates/debugging.sh
codebrief git-info \
--full-diff \
--output contexts/debug-context.md
codebrief flatten src/ \
--include "*.py" \
--exclude "*test*" \
--output contexts/code-context.md
Output Optimization for LLMs¶
Token Efficiency¶
# Efficient context for token limits
codebrief flatten src/ \
--include "*.py" \
--exclude "*test*" "*__pycache__*" \
--output efficient-context.md
# Focus on recent changes only
codebrief git-info \
--log-count 3 \
--diff-options "--stat" \
--output recent-changes.md
Structured Organization¶
codebrief automatically creates well-structured output:
# Project Bundle
## Table of Contents
- [Directory Tree](#directory-tree)
- [Git Context](#git-context)
- [Dependencies](#dependencies)
- [Code Files](#code-files)
## Directory Tree
[Clean file structure]
## Git Context
[Recent commits and changes]
## Dependencies
[Project dependencies by type]
## Code Files
[Organized by directory]
Best Practices¶
Context Size Management¶
- Use Specific Tools for focused questions
- Exclude Irrelevant Sections with bundle options
- Filter File Types based on your question
- Limit Git History to recent relevant commits
Quality Context Tips¶
- Include .llmignore to exclude noise
- Use Configuration for consistent defaults
- Update Regularly for current context
- Test with LLMs to refine your approach
Security Considerations¶
# Ensure sensitive files are excluded
echo "*.env" >> .llmignore
echo "secrets/" >> .llmignore
echo "*.key" >> .llmignore
echo "credentials.*" >> .llmignore
# Verify exclusions work
codebrief tree # Check output for sensitive files
Troubleshooting¶
Context Too Large¶
# Reduce context size
codebrief bundle \
--exclude-deps \
--exclude-git \
--flatten src/core/ \
--output minimal-context.md
Missing Important Context¶
# Ensure nothing important is excluded
codebrief tree # Verify file structure
cat .llmignore # Check ignore patterns
LLM Not Understanding Context¶
- Add More Structure - Use bundle command
- Include Documentation - Add README, comments
- Provide Recent Changes - Include Git context
- Clear Scope - Focus on specific areas
Example Prompts¶
General Analysis¶
I'm sharing my project context generated by codebrief. Please analyze:
1. Code organization and structure
2. Potential improvements
3. Best practices compliance
4. Security considerations
[Paste codebrief output]
Specific Feature Development¶
Here's my current project context:
[Paste codebrief output]
I want to add [specific feature]. Please:
1. Suggest where to implement it
2. Identify required changes
3. Recommend testing approach
4. Consider integration points
Bug Investigation¶
I have a bug in [specific area]. Here's the relevant context:
[Paste focused codebrief output]
The issue is: [describe problem]
Expected: [expected behavior]
Actual: [actual behavior]
Please help investigate and suggest fixes.
Next Steps¶
- Bundle Workflows - Advanced bundling patterns
- Configuration - Optimize for your workflow
- CLI Commands - Complete command reference
- Contributing - Help improve LLM integration